Menu ≡
kalendar.beda.cz

Výpočet ekliptikálních souřadnic Měsíce

Na této stránce najdete postup výpočtu ekliptikálních souřadnic Měsíce pro daný okamžik. Uvedený algoritmus není nejefektivnější či nejpřesnější, ale pěkně dokumentuje postup výpočtu. Chyba v určení ekliptikální délky je cca 5 úhlových minut a šířky cca 2 úhlové minuty, což je pro naše potřeby dostatečná přesnost. Argumenty goniometrických funkcí jsou ve stupních. Při jednotlivých výpočtech jsou úhly vždy převedeny na rozsah 0° až 360°, vyjma ekliptikální šířky, která může být v rozsahu -90° až +90°. Vzdálenost od středu Země se uvádí v zemských poloměrech (6378 km).

Pohyb Měsíce kolem Země je ve skutečnosti velmi komplikovaný. Jeho pohyb ruší mnoho poruch, říkáme jim perturbace. Již Ptolemaios objevil největší poruchu, nazývá se evekce. Závisí na vzájemné poloze Slunce i Měsíce, kvůli ní je odchylka Měsíce i přes jeden úhlový stupeň. Další nepravidelnost zjistil Tycho Brahe, je pojmenovaná variace. Porucha roční nerovnost je zase způsobena proměnnou vzdáleností Země od Slunce. Proto, když vypočítáme předběžnou pozici Měsíce na ekliptice, musíme ještě připočítat jednotlivé perturbace, abychom získali přesnější souřadnice. K výpočtu perturbací jsou zapotřebí i dráhové elementy Slunce (potažmo Země).

Z níže uvedených údajů lze lehce vypočítat i fázi Měsíce. Ta se v podstatě rovná rozdílu mezi ekliptikální délkou Měsíce (L) a střední délkou Slunce (Ls). Dle tohoto rozdílu najdeme v tabulce odpovídající fázi. Rozdíl vždy upravte na interval 0° - 360°.

L - Ls    0°  90°180°270°
fázeNovPrvní čtvrtÚplněkPoslední čtvrt

popisvzorecvýsledek
lokální datum a čas právě teď07.02.2026 13:58
světové datum a čas (UT) právě teď07.02.2026 12:58
UT převedeme na počet dní od 31.12.1999, hodiny a minuty převedeme na zlomky dní. Výsledek nazveme d
(operátor '\' značí dělení pouze na celá čísla, bez desetin)
d = 367 × rok - 730530
d = d - (7 × (rok + (měsíc + 9) \ 12)) \ 4
d = d + (275 × měsíc) \ 9 + den
d = d + hodiny / 24 + minuty / 1440
9535.540278
délka výstupního uzlu (Ω)
Ω = 125.1228 - 0.0529538083 × d
340.179628
sklon dráhy k ekliptice (i)
i = 5.1454
5.1454
argument perihelu Měsíce (ω)
ω = 318.0634 + 0.1643573223 × d
85.299267
velká poloosa dráhy (a)
(v poloměrech Země)
a = 60.2666
60.2666
číselná excentricita dráhy Měsíce (e)
e = 0.0549
0.0549
střední anomálie Měsíce (M)
M = 115.3654 + 13.0649929509 × d
137.131912
excentrická anomálie (E)
E je řešením Keplerovy rovnice 
M = E - e × sin(E)
139.18778
geocentrická pravoúhlá souřadnice (x)
x = a × (cos(E) - e)
-48.921754
geocentrická pravoúhlá souřadnice (y)
y = a × sin(E) × √1 - e × e
39.329763
pravá anomálie (ν)
(malé řecké písmeno )
ν = atan2(y, x)
141.203085
předběžná vzdálenost
v zemských poloměrech (r0)
r0 = √x × x + y × y
62.77076
ekliptikální pravoúhlá souřadnice (xe)
xe = r × (cos(Ω) × cos(ν+ω) - sin(Ω) × sin(ν+ω) × cos(i))
-56.024253
ekliptikální pravoúhlá souřadnice (ye)
ye = r × (sin(Ω) × cos(ν+ω) + cos(Ω) × sin(ν+ω) × cos(i))
-28.013839
ekliptikální pravoúhlá souřadnice (ze)
ze = r × (sin(ν + ω) × sin(i))
-4.083656
předběžná ekliptikální délka Měsíce (L0)
L0 = atan2(ye, xe)
206.566452
předběžná ekliptikální šířka Měsíce (B0)
B0 = atan2(ze, √xe × xe + ye × ye)
-3.730106
perturbace:
(sluneční elementy jsou označeny indexem 's' a měsíční elementy zase indexem 'm')
střední anomálie Slunce (Ms)
34.277963
střední anomálie Měsíce (Mm)
Mm = M
137.131912
střední délka Slunce (Ls)
Ls = ωs + Ms + 180
317.667425
střední délka Měsíce (Lm)
Lm = M + ω + Ω
202.610807
střední elongace Měsíce (D)
D = Lm - Ls
244.943382
argument šířky Měsíce (F)
F = Lm - Ω
222.431179
oprava pro délku Měsíce (Lp)
Lp = -1.274 × sin(Mm - 2 × D)   (evekce)
     +0.658 × sin(2 × D)        (variace)
     -0.186 × sin(Ms)           (roční nerovnost)
     -0.059 × sin(2 × Mm - 2 × D)
     -0.057 × sin(Mm - 2 × D + Ms)
     +0.053 × sin(Mm + 2 × D)
     +0.046 × sin(2 × D - Ms)
     +0.041 × sin(Mm - Ms)
     -0.035 × sin(D)
     -0.031 × sin(Mm + Ms)
     -0.015 × sin(2 × F - 2 × D)
     +0.011 × sin(Mm - 4 × D)
0.228562
oprava pro šířku Měsíce (Bp)
Bp = -0.173 × sin(F - 2 × D)
     -0.055 × sin(Mm - F - 2 × D)
     -0.046 × sin(Mm + F - 2 × D)
     +0.033 × sin(F + 2 × D)
     +0.017 × sin(2 × Mm + F)
-0.162203
oprava pro vzdálenost Měsíce (rp)
rp = -0.58 × cos(Mm - 2 × D)
     -0.46 × cos(2 × D)
-0.280384
vzdálenost Měsíce (r)
(v poloměrech Země a v kilometrech)
r = r0 + rp
62.490376
398.6 tisíc km
ekliptikální šířka Měsíce (B)
B = B0 + Bp
-3.892309
-3°54'
ekliptikální délka Měsíce (L)
L = L0 + Lp
206.795014
206°48'

Další informace:

Kalendáře Helma - nástěnný, stolní i pracovní kalendář Diáře Helma - diář a zápisník
Válka na Ukrajině: 1445.den
QR kód

Pokud se na tento web rádi vracíte pro praktické informace nebo si díky němu rozšiřujete své znalosti o kalendáři, můžete autorovi vyjádřit svou podporu malým finančním příspěvkem. Stačí oskenovat přiložený QR kód (kliknutím lze zvětšit) a snadno přispět přes QR platbu.

Děkuji za vaši štědrost a podporu!


Nahoru